

Tomo 1

Gestión de la infraestructura

FLORIAN AUER

Tomo 1

Gestión de la infraestructura

FLORIAN AUER

COLABORADORES

Dipl.-Ing. Dr. techn. Günther Achs | FCP | Área temática Ruido

Dipl.-Ing. Bernhard Antony | Plasser & Theurer | Coordinación del proyecto y redacción de contenidos

Dr. Karl-Otto Endlicher | BMVIT | Área temática Espacio Ferroviario Europeo Único

Silvia Freudmann | free lance | Diseño gráfico

Peter Gaudek | free lance | Diseño gráfico

Hermann Holzer-Söllner | CSI | Redacción de contenidos

Dipl.-Ing. Dr. techn. Jochen Holzfeind | SBB | Área temática Planificación de mantenimiento, SBB-Infrastruktur

Dipl.-Ing. (FH) Silvio Klügel M.Sc. | GEPRO | Área temática Análisis de impacto ambiental

Ing. Alexander Kodym | ÖBB | Área temática Gestión de activos

Dipl.-Ing. Vasco Paul Kolmorgen | railML | Área temática railML

Dipl.-Ing. Monika König | FCP | Redacción de contenidos + Investigación

Ing. Mag. Marko Koren | ÖBB | Área temática Economía

Julia Leitner | Plasser & Theurer | Ayudante de proyecto

Dipl.-Ing. Dr. techn. Michael Mach | ÖBB | Área temática Gestión del ciclo de vida

Assoc. Prof. Dipl.-Ing.pl.-Ing. Dr. techn. Stefan Marschnig | TU Graz | Área temática Cánones de acceso

Ing. Alexander Meierhoff | ÖBB | Área temática Declaraciones sobre la red

Dipl.-Ing. Roland Pavel | ÖBB | Área temática programa Zielnetz (Red Objetivo)

Mag. Viktoria Putz | Plasser & Theurer | Ayudante de proyecto

Dipl.-Ing. Andreas Sinning | Trimble | Área temática BIM

Dipl.-Ing. Wolfgang Steinhauser | STCE | Área temática Vibraciones

Dipl.-Ing. Winfried Stix | ÖBB | Áreas temáticas railML, BIM

Dipl.-Ing. Helmut Uttenthaler | ÖBB | Área temática Horario cadenciado

Univ.-Prof. Dipl.-Ing. Dr. techn. Peter Veit | TU Graz | Áreas temáticas LCC, Economía del transporte en general

Dipl.-Ing. Dr. techn. Michael Walter | ÖBB | Área temática ERA, LCM

Dipl.-Ing. Stefan Weißmann | FCP | Áreas temáticas Red Objetivo, BIM

Ing. Alfred Wöhnhart | Antiguo empleado de ÖBB | Redacción y revisión

Información bibliográfica de la Biblioteca Nacional de Alemania

La presente publicación está registrada en la Bibliografía Nacional de Alemania; los datos bibliográficos detallados pueden consultarse en Internet en la dirección http://dnb.de.

Editorial: PMC Media House GmbH

Espenschiedstraße 1 D-55411 Bingen Oficina de Hamburgo Heidenkampsweg 75

(c/o DVV Media Group GmbH)

D-20097 Hamburgo

Teléfono: +49 (0)40 237 14-02 Fax: +49 (0)40 237 14-236 Internet: pmcmedia.com E-Mail: office@pmcmedia.com

Distribución y atención

al cliente: Sabine Braun

Diseño de cubiertas: Ines Erdmann

Traductor: Martin Eller

Composición e impresión: TZ-Verlag & Print GmbH, Roßdorf

© 2018 PMC Media House GmbH

1ª edición 2018

ISBN 978-3-96245-161-5

Esta obra y todas sus partes, están protegidas por el derecho de autor. Cualquier uso fuera de los estrictos límites de la ley de propiedad intelectual o sin la autorización expresa de la editorial es ilegal y será perseguido por ley. Dicha protección se aplica, en particular, a la reproducción de cualquier tipo, las traducciones, el microfilmado, así como el almacenamiento y tratamiento en sistemas electrónicos.

A pesar de nuestras exhaustivas investigaciones, lamentablemente no hemos podido identificar a todos los autores de las figuras que se incluyen. En caso de haber publicado por error imágenes que no estaban destinadas para ello, rogamos que lo comunique directamente a la editorial.

Una publicación de

Índice

Prólo	go	9
Índice	e de figuras	11
1	Objetivos de sostenibilidad de los administradores de infraestructuras	15
1.1	Distintos enfoques sobre la sostenibilidad	15
1.2	La sostenibilidad en la Unión Europea	16
1.3	La sostenibilidad en Deutsche Bahn	19
1.4	La sostenibilidad en los ferrocarriles federales austriacos	22
1.5	La sostenibilidad en los ferrocarriles federales suizos	26
1.6	Resumen	29
2	Espacio Ferroviario Europeo Único – SERA	33
2.1	Mercado interior de la Unión Europea	33
2.1.1	Armonización técnica	34
2.1.2	Armonización jurídica	35
2.2	Red Transeuropea de Transporte TEN-T	36
2.2.1	Orientaciones para el desarrollo de la red TEN-T	39
2.2.2	Mecanismo "Conectar Europa" – MCE	41
2.2.3	Corredores de mercancías transfronterizos	42
2.3	El concepto de Espacio Ferroviario Europeo Único – SERA	42
2.4	Libros Verdes y Libros Blancos del transporte	44
2.5	Directiva SERA	51
2.5.1	Los cuatro paquetes ferroviarios	51
2.5.2	Establecimiento de un espacio ferroviario europeo único	53
253	Armonización de las declaraciones sobre la red	55

2.5.4	RailNetEurope — RNE	56
2.6	Agencia Ferroviaria de la Unión Europea – ERA	56
2.6.1	Funciones de la Agencia Ferroviaria de la Unión Europea	57
2.6.2	Desarrollo de los procedimientos de autorización	59
2.6.3	Mantenimiento de vehículos	62
2.7	Directiva de Interoperabilidad	64
2.7.1	Desglose en subsistemas	67
2.7.2	"Requisitos esenciales" para la interoperabilidad del sistema ferroviario	69
2.8	Especificaciones Técnicas de Interoperabilidad	71
2.8.1	Elaboración y estructura de las ETI	72
2.8.2	Componentes de interoperabilidad	74
2.8.3	ETI Infraestructura – ETI INF	75
2.8.4	ETI personas con movilidad reducida	78
2.8.5	ETI Seguridad en túneles ferroviarios	79
2.8.6	ETI Energía	81
2.9	Procedimiento para la evaluación de la conformidad	82
2.9.1	"Verificación CE" de subsistemas	83
2.9.2	Evaluación de la conformidad y/o idoneidad para el uso de componentes de interoperabilidad	84
2.10	Directiva de seguridad	86
2.10.1	Disposiciones generales	87
2.10.2	Armonización del contenido de las normas de seguridad	88
2.10.3	Autorización de seguridad de los administradores de infraestructuras	89
2.10.4	Certificado de seguridad único para empresas ferroviarias	91
2.10.5	Cometidos y funciones de las autoridades nacionales de seguridad	91
2.10.6	Funciones del organismo de investigación	92

2.11	Registros	93
2.11.1	Registro de Infraestructuras	93
2.11.2	Registros de vehículos	95
2.12	Normas técnicas	96
2.12.1	Principios fundamentales	96
2.12.2	Normas en el sistema ferroviario	97
2.12.3	Normas europeas – EN	98
2.12.4	Normas nacionales	101
2.12.5	Organización internacional	102
2.12.6	Fichas UIC	102
3	Gestión de información y datos de infraestructura	119
3.1	Descripción integral de la infraestructura	119
3.2	Definición de superestructura ferroviaria en esta serie de libros	120
3.3	Creación de una infraestructura de información espacial – INSPIRE	121
3.4	Documentación de las instalaciones	123
3.4.1	Registros manuales	123
3.4.2	Hojas de cálculo	124
3.4.3	Digitalización basada en un modelo de red	126
3.5	El modelo de red	127
3.5.1	Diferentes enfoques sobre la red ferroviaria	127
3.5.2	Estructura del modelo de red	128
3.5.3	El RailTopoModel de UIC	129
3.5.4	Interfaz railML®	131
3.5.5	Gobierno de Datos (Data Governance)	132
3.6	Building Information Modeling – Modelado de Información de Construcción	134
3.7	El futuro – "El sistema online integrado de gestión ferroviaria"	136

4	Conservación sostenible de la red existente	141
4.1	La superestructura ferroviaria como instalación de producción	141
4.2	Funciones del administrador de infraestructuras	142
4.2.1	Generalidades	142
4.2.2	Perspectiva de mercado, de la explotación y de las instalaciones	143
4.2.3	Planificación estable de las medidas de infraestructura	145
4.3	Procesos de mantenimiento y renovación	148
4.3.1	Actividades de mantenimiento	148
4.3.2	Medidas de inversión	150
4.3.3	Tipos de mantenimiento programado	151
4.4	Optimización sistémica de la infraestructura	153
4.4.1	Perspectiva de los stakeholders	153
4.4.2	Perspectiva de la infraestructura	157
4.4.3	Perspectiva de calidad	158
4.4.4	Gestión de la información	161
4.4.5	Perspectiva de procesos	163
4.4.6	Perspectiva de costes	164
4.4.7	Cánones por la utilización de infraestructuras equitativos	167
4.4.8	Activación de las instalaciones	171
4.4.9	Planificación integrada de la inversión y el mantenimiento	174
4.4.10	Eficiencia y efectividad	175
4.4.11	Idoneidad del sistema	176
4.4.12	Proyecto DACH	177
4.4.13	Red europea de administradores de infraestructuras	178
4.4.14	Evaluación comparativa del sistema ferroviario europeo	178
4 4 15	Posibilidades de la digitalización	181

4.5	Procesos de gestión	184
4.5.1	Elaboración de horarios de servicio	184
4.5.2	Enfoque integral de procesos	185
4.5.3	Gestión de activos	186
4.5.4	Gestión del ciclo de vida	187
4.5.5	Gestión de la sostenibilidad	196
4.5.6	Gestión del conocimiento	196
4.5.7	Gestión técnica de la seguridad	198
4.6	Impacto ambiental	199
4.6.1	Consumo de energía	199
4.6.2	Ruido	200
4.6.3	Vibraciones	202
4.6.4	Análisis de impacto ambiental	204
4.7	Informe de estado de la red	209
4.7.1	Deutsche Bahn AG	210
4.7.2	ÖBB-Infrastruktur AG	212
4.7.3	SBB Infrastruktur	213
4.7.4	Verkehrsbund Berlin-Brandenburg (Consorcio de Transportes de Berlín-Brandeburgo)	214
4.8	Resumen	215
5	Modernización sostenible de la red ferroviaria	225
5.1	Enfoque sistémico	225
5.2	Funciones de la política de transportes	226
5.2.1	Contexto	226
5.2.2	Directrices	227
5.2.3	Objetivos de la política de transportes	227
5.2.4	Análisis del statu quo	228

5.2.5	Estudios económicos	235
5.2.6	Medidas y estrategias de implementación	236
5.2.7	Plan Integral de Transporte multimodal	237
5.3	Objetivos desde la perspectiva del administrador de infraestructuras	239
5.4	Planificación estratégica de la red tomando como ejemplo el programa Zielnetz 2025+	241
5.4.1	Introducción	241
5.4.2	Planificación estratégica de la red	241
5.4.3	Evaluación de la idoneidad del sistema	245
5.4.4	Evaluación de la capacidad de la infraestructura ferroviaria	246
5.4.5	Análisis de los tiempos de viaje	248
5.4.6	Potenciales de mejora de la eficiencia	249
5.4.7	Priorización de proyectos	250
5.4.8	Efectos del programa Zielnetz	251
5.5	Horario cadenciado integrado	252
5.5.1	Historia del horario cadenciado integrado	253
5.5.2	Fundamentos del horario cadenciado integrado	253
5.5.3	Ventajas del horario cadenciado integrado	255
5.5.4	Proceso de diseño de un horario cadenciado integrado	256
5.5.5	Procedimientos para el desarrollo de la infraestructura	257

Prólogo

La gestión de la infraestructura ferroviaria es un tema de gran complejidad, en el que influyen una gran variedad de factores económicos, jurídicos, políticos y, sobre todo, técnicos. El objetivo de la presente serie, "Best Practices para el mantenimiento de vía", consiste en presentar estas interdependencias de forma estructurada a todos los que trabajen en este ámbito o se interesen por la materia.

El Tomo 1, "Gestión de la infraestructura", ofrece una descripción general de las problemáticas y los aspectos relacionados con la gestión de la infraestructura, centrándose, en particular, en la superestructura de vía. Una gestión integral y sostenible de la infraestructura ferroviaria requiere un enfoque estructurado y metódico. Las exigencias del mercado y las preocupaciones medioambientales no tienen por qué estar en contradicción, siempre y cuando se adopte un enfoque integrador y común para ambas materias en el ámbito del sistema ferroviario.

El "cuarto paquete ferroviario" de la UE define con claridad la futura orientación de las tareas y la armonización de los procedimientos a utilizar por los administradores de infraestructuras, con el objetivo de unificar la gran diversidad de normativas y reglamentos, surgidos en un contexto histórico nacional, y lograr así procesos comunes para el sector ferroviario. El presente libro pretende mostrar las correlaciones existentes, con el fin de promover una mejor comprensión de la necesidad de un Espacio Ferroviario Único y crear una base de entendimiento común para todos los implicados.

A través de ejemplos de mejores prácticas procedentes en su mayoría de Europa Central, la presente obra apunta medidas para modernizar y mejorar el mantenimiento de la infraestructura en las redes existentes. Muchos administradores de infraestructuras se encuentran, además, ante un cambio generacional, lo que acelera la reorientación de los procesos y procedimientos. Las modernas tecnologías de la información y comunicación permiten simplificar notablemente el registro y la representación de las complejas interrelaciones descritas. Los nuevos enfoques sobre la gestión de activos y del ciclo de vida permiten la implementación de la así llamada "vía de cristal" (en alemán: "Gläserner Fahrweg"), o del "Ferrocarril 4.0".

En este contexto, quisiera dar las gracias a mis maestros y empleadores hasta la fecha: la Universidad Técnica de Graz (TU Graz), la empresa ÖBB-Infrastruktur AG, así como Plasser & Theurer.

Asimismo, quisiera expresar mi agradecimiento a todos los que han hecho posible la creación de este primer tomo, y, en particular, a Johannes Max-Theurer, Johann Dumser, Rainer Wenty y Michael Zuzic, así como a mis maestros Klaus Rießberger y Rudolf Schilder.

También quisiera manifestar mi gratitud a Monika König, Alfred Wöhnhart y Hermann Holzer-Söllner por su apoyo en la redacción de contenidos, haciendo una especial mención de la labor de Bernhard Antony.

Y, no por último, gracias de todo corazón a mi familia por la comprensión mostrada a lo largo de los últimos meses.

Florian Auer Viena, marzo de 2018

Índice de figuras

Fig. 1-1:	La sostenibilidad requiere un equilibrio adecuado entre economía, ecología y sociedad	15
Fig. 1-2:	Estrategia Europa 2020 – Vista general	17
Fig. 1-3:	Extracto de las iniciativas emblemáticas de la UE conforme a la "Estrategia Europa 2020"	18
Fig. 1-4:	Deutsche Bahn resume los informes de gestión y de sostenibilidad en un único "Informe Integrado"	20
Fig. 1-5:	ÖBB informa a sus stakeholders a través de una revista sobre sostenibilidad propia	24
Fig. 1-6:	SBB publica un informe combinado de gestión y de sostenibilidad	26
Fig. 2-1:	Las cuatro libertades fundamentales de la UE	33
Fig. 2-2:	Orientaciones de la Unión para el desarrollo de la Red Transeuropea de Transporte	37
Fig. 2-3:	Corredores europeos de mercancías de acuerdo al Reglamento (UE) nº 913/2010	41
Fig. 2-4:	Visión de la implementación del Espacio Ferroviario Europeo Único	43
Fig. 2-5:	El Reglamento ERA, la Directiva de Interoperabilidad y la Directiva de Seguridad como pilar técnico común de los paquetes ferroviarios	44
Fig. 2-6:	La interpretación de las directivas por parte de los ferrocarriles cambió por las iniciativas de la UE	44
Fig. 2-7:	Evolución del reparto modal en Europa	46
Fig. 2-8:	Evolución de las emisiones contaminantes del transporte por carretera en Europa	47
Fig. 2-9:	Costes externos y de infraestructura de un camión por el recorrido de 100 km en una autopista poco congestionada	48
Fig. 2-10:	Fases de desarrollo cronológico de los cuatro paquetes ferroviarios europeos	53
Fig. 2-11:	Ventajas de los procedimientos de autorización y puesta en servicio simplificados	60
Fig. 2-12:	Procedimiento para las autorizaciones para la puesta en servicio con arreglo a la Recomendación 2011/217/UE	61
Fig. 2-13:	Vista general de la función de gestión de las EEM	63
Fig. 2-14:	Evolución cronológica de las Directivas de Interoperabilidad	66
Fig. 2-15:	Desglose del sistema ferroviario en sus subsistemas	68
Fig. 2-16:	Subgrupos de los subsistemas de Infraestructura y Energía	69
Fig. 2-17:	"Requisitos generales" del sistema ferroviario	70
Fig. 2-18:	"Requisitos específicos de cada subsistema" de Infraestructura y Energía	71
Fig. 2-19:	Vista general de las Especificaciones Técnicas de Interoperabilidad	73
Fig. 2-20:	Estructura de los subsistemas instalados en tierra de acuerdo con ETI INF y ETI ENE	74
Fig. 2-21:	Parámetros básicos de la ETI "Infraestructura" parte 1	75
Fig. 2-22:	Parámetros básicos de la ETI "Infraestructura" parte 2	76
Fig. 2-23:	Parámetros de prestación básicos para la clasificación ETI de las líneas	77
Fig. 2-24:	Módulos de los procedimientos de evaluación de la conformidad de componentes	78

Fig. 2-25:	Interacción entre las líneas de defensa	80
Fig. 2-26:	Parámetros básicos de la ETI "Energía"	81
Fig. 2-27:	Valores admisibles para el hilo de contacto de conformidad con la ETI ENE	82
Fig. 2-28:	Procedimiento para la expedición de una declaración CE de verificación de los subsistemas ETI	83
Fig. 2-29:	Módulos para la "verificación CE" de subsistemas	84
Fig. 2-30:	Expedición de una declaración CE de la conformidad para componentes de interoperabilidad	85
Fig. 2-31:	Módulos de la evaluación CE de la conformidad y de la idoneidad para el uso para componentes de interoperabilidad	86
Fig. 2-32:	Listado de los indicadores de seguridad de conformidad con la Directiva de seguridad	90
Fig. 2-33:	Vista general del flujo de información sobre accidentes en la UE	92
Fig. 2-34:	Cuadro sinóptico de los conjuntos de normas del sistema ferroviario europeo	98
Fig. 2-35:	Vista general de los comités y grupos de trabajo de CEN/TC 256 "Aplicaciones ferroviarias"	99
Fig. 2-36:	Proceso de renovación de Normas Europeas (EN)	100
Fig. 3-1:	La superestructura ferroviaria se compone de instalaciones de vía y de la línea aérea de contacto	120
Fig. 3-2:	La superestructura ampliada es el área determinante para la disponibilidad de las instalaciones ferroviarias	121
Fig. 3-3:	Geoportal INSPIRE de la UE	122
Fig. 3-4:	Cronograma de trabajos de superestructura con el típico diagrama espacio-tiempo (aprox. 1960)	124
Fig. 3-5:	Aplicación intranet típica (aprox. 2005)	125
Fig. 3-6:	Etapas de desarrollo de la documentación de las instalaciones	126
Fig. 3-7:	Vista general de los niveles de descripción del RailTopoModel	131
Fig. 3-8:	Unificación del flujo de datos mediante RailTopoModel y la interfaz railML®	132
Fig. 3-9:	Visión del proyecto AnlagenVerzeichnisSystem (AVS) de ÖBB tomando como base un modelado de la red	133
Fig. 3-10:	El Building Information Modeling es mucho más que el clásico CAD	135
Fig. 3-11:	Visión de un sistema de gestión online de la infraestructura ferroviaria	137
Fig. 4-1:	El producto del administrador de infraestructuras es el tráfico seguro en sus instalaciones	142
Fig. 4-2:	El proceso estratégico principal del administrador de infraestructuras	144
Fig. 4-3:	Proceso de mejora continua en el ámbito de la infraestructura ferroviaria	145
Fig. 4-4:	Desglose de las inversiones en infraestructura	147
Fig. 4-5:	Vista general de los tipos de mantenimiento programado	151
Fig. 4-6:	Medidas para mantener libre la sección	152
Fig. 4-7:	Encuesta de DB a los stakeholders 2014: listado de los campos temáticos más importantes	154
Fig. 4-8:	Encuesta de DB a los stakeholders 2014 – matriz de materialidad	155
Fig. 4-9:	Modelo Kano de un vehículo ferroviario	156
Fig. 4-10:	Comportamiento de calidad de instalaciones	158

Fig. 4-11:	En el ambito de las infraestructuras ferroviarias la implementación de un limite de actuación proactivo conduce a una mayor durabilidad de las instalaciones	159
Fig. 4-12:	Una gestión proactiva del ciclo de vida consiste en gestionar el estado de las instalaciones siguiendo criterios de necesidad y sostenibilidad	160
Fig. 4-13:	Gestión sostenible de la información	162
Fig. 4-14:	Pirámide de agregación de procesamiento y comunicación de información	162
Fig. 4-15:	Ciclo de vida del producto de tres etapas en instalaciones	164
Fig. 4-16:	La descripción de la calidad se realiza de conformidad con los procesos de mantenimiento	164
Fig. 4-17:	Influencia de la amortización en los costes anuales de las instalaciones ferroviarias	165
Fig. 4-18:	Generadores de costes en la infraestructura ferroviaria	166
Fig. 4-19:	Planteamiento básico de la UE para la financiación de la infraestructura	168
Fig. 4-20:	Herramientas de gestión de infraestructuras de SBB	170
Fig. 4-21:	Comparación de los principios de activación de los ferrocarriles DACH	172
Fig. 4-22:	La "Estrategia 3-i" de DB Netz AG conforma la base de la planificación de la inversión y el mantenimiento	175
Fig. 4-23:	Elementos principales de la planificación integrada de la inversión y el mantenimiento (Estrategia 3-i) de DB Netz AG	176
Fig. 4-24:	Tipos de clústeres de líneas de DB AG	177
Fig. 4-25:	Vista general de los grupos de trabajo que integran el proyecto de cooperación en infraestructura DACH	177
Fig. 4-26:	Composición de los parámetros del Railway Perfomance Index	179
Fig. 4-27:	Comparación entre países según el Railway Performance Index	180
Fig. 4-28:	Relación entre el Railway Performance Index y el gasto público en infraestructura	181
Fig. 4-29:	El mundo digital de DB-Fahrweginstandhaltung (división de mantenimiento de DB)	182
Fig. 4-30:	La interconexión de la información es la clave para una optimización sistémica de la infraestructura ferroviaria	183
Fig. 4-31:	Plazos del horario de servicio	184
Fig. 4-32:	Enfoque integral de la infraestructura ferroviaria	186
Fig. 4-33:	La gestión de activos de un administrador de infraestructuras	187
Fig. 4-34:	El recorrido desde el Plan Integral de Transportes nacional hasta el borrador de Plan marco	188
Fig. 4-35:	La orientación a procesos es la base de una gestión proactiva del ciclo de vida	189
Fig. 4-36:	Definición de medidas combinando los principios Top Down y Bottom Up	191
Fig. 4-37:	Opciones de visualización de la alteración en el tiempo de la posición de la vía	192
Fig. 4-38:	Costes de ciclo de vida óptimos como resultado de la interacción entre calidad, medidas aplicadas y asignación de fondos	192
Fig. 4-39:	Tratamiento de carriles en DB Netz AG	194
Fig. 4-40:	Elementos de una estrategia de sostenibilidad para las instalaciones	196
Eig / /1.	La accalara dal canacimiento muestra los diferentes naldaños de la gestión del canacimiento	107

Fig. 4-42:	Factores que influyen en la seguridad de la infraestructura ferroviaria	198
Fig. 4-43:	Extracto del mapa de ruido de Austria 2012 (ferrocarril, media de 24 horas)	202
Fig. 4-44:	Marco de un análisis de impacto ambiental	205
Fig. 4-45:	Vista general de la delimitación de sistemas en un análisis de impacto ambiental	206
Fig. 4-46:	Factores que influyen en la elaboración de un inventario	206
Fig. 4-47:	La caracterización de las emisiones, los recursos y los residuos conforma la base para una posterior ponderación, tomando como ejemplo Suiza	208
Fig. 4-48:	Interacción entre el estado de la red, el tipo de medidas y la asignación de fondos para un mantenimiento y una renovación óptimos	209
Fig. 4-49:	Sistema de indicadores de DB del acuerdo LuFV II	211
Fig. 4-50:	Evaluación del comportamiento de las instalaciones	212
Fig. 4-51:	Evolución del estado y clasificación por tipos de las instalaciones de SBB	213
Fig. 5-1:	Una política de transportes integral presenta numerosas interdependencias	226
Fig. 5-2:	Objetivos relevantes para el ferrocarril del Plan Integral de Transporte austríaco	228
Fig. 5-3:	Evolución demográfica en Austria por tipos de región	229
Fig. 5-4:	Evolución del tráfico de mercancías sobre vía tomando en consideración la crisis económica	233
Fig. 5-5:	Estrategia Top Down para la elaboración del Plan Integral de Transporte austríaco	238
Fig. 5-6:	Mapa de procesos para la elaboración del Sachplan Verkehr, parte "infraestructura ferroviaria", en Suiza	239
Fig. 5-7:	Objetivos de infraestructura en el programa Zielnetz 2025+ de ÖBB	240
Fig. 5-8:	Contenidos y perspectivas de la planificación estratégica de la red	243
Fig. 5-9:	Secuencia de procesos para la elaboración de la Red Objetivo	244
Fig. 5-10:	Evaluación de la idoneidad del sistema	245
Fig. 5-11:	Requisitos de idoneidad del sistema para el programa Zielnetz 2025+ de ÖBB	246
Fig. 5-12:	Factores que influyen en la capacidad de la línea	247
Fig. 5-13:	Grado de utilización de la capacidad de la infraestructura existente en 2009, tomando en consideración los volúmenes de tráfico de la Previsión 2025+	248
Fig. 5-14:	Concepto para un horario cadenciado integrado para Austria	249
Fig. 5-15:	Clasificación de proyectos en función de sus efectos sobre la capacidad y el tiempo de viaje	251
Fig. 5-16:	Volumen de tráfico ferroviario con y sin la aplicación de medidas de modernización de la infraestructura	252
Fig. 5-17:	Tiempos de recorrido de las aristas en círculo	254
Fig. 5-19:	Matadalagía para al decarrolla de una infraestructura orientada a la compatibilidad con un HCI	257

En el período de referencia, las tasas de crecimiento en el sector ferroviario fueron más bien bajas, y era precisamente ahí, donde la Comunidad Europea pretendía incidir con el Libro Blanco. Las inversiones específicas en la Red Transeuropea representaron una de las medidas puestas en marcha. La Comunidad Europea quería fomentar, en particular, la libre competencia entre los operadores ferroviarios, ya que la liberalización del sector ferroviario en Europa es considerada una de las claves del éxito. De ahí también la insistencia con la que la UE fomenta y demanda la separación de los administradores ferroviarios y las empresas de transporte ferroviario, tanto en el caso del tráfico de mercancías como en el tráfico internacional de pasajeros. En varias ocasiones se hace una comparación con el sector ferroviario de EE.UU., donde la proporción del transporte de mercancías en el reparto modal es del 40 %. Según el Libro Blanco, este porcentaje tan elevado sería achacable a la apertura de los mercados. [52]

Las desventajas de otros medios de transporte se exponen con claridad. 40.000 muertos anuales en las carreteras europeas representan más o menos la desaparición de una ciudad pequeña. El ruido y la contaminación atmosférica, que no solo se limita a las emisiones de CO₂, sino que abarca también las de óxido nítrico, ozono y partículas (véase fig. 2-8), se consideran un grave inconveniente, aunque el endurecimiento de las directivas de emisiones contaminantes ya estaba provocando notables cambios positivos en las emisiones. También se esboza una previsión de la evolución futura hasta 2020 [53].

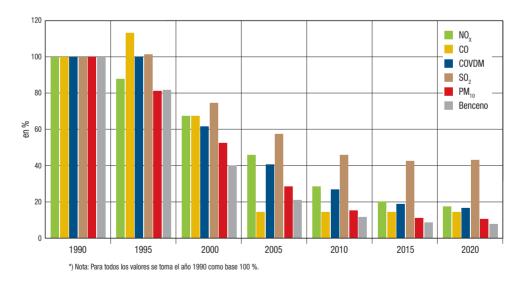


Fig. 2-8: Evolución de las emisiones contaminantes del transporte por carretera en Europa [54]

El Libro Blanco cuestiona la exención de impuestos del combustible de aviación. Exige, además, una modificación significativa de la política de tarificación, así como una mayor inclusión de los costes externos en las tarifas. Dado que las medidas de mejora de la seguridad y de reducción del impacto ambiental generan mayores costes externos y de infraestructura, juzga necesario un aumento de los precios del transporte a medio plazo. La fig. 2-9 indica los costes externos y de infraestructura (en euros) de un camión por el recorrido de 100 km en una autopista poco congestionada. [55]

Costes externos y de infraestructura	Costes medios [euros/100 km*]
Contaminación atmosférica	2,3-15,0
Cambio climático	0,2- 1,5
Infraestructura	2,1- 3,3
Ruido	0,7- 4,0
Accidentes	0,2- 2,6
Congestión	2,7- 9,3
Total	8,2-35,7

^{*} Recorrido en una autopista poco congestionada de un camión

Fig. 2-9: Costes externos y de infraestructura de un camión por el recorrido de 100 km en una autopista poco congestionada [56]

Según el Libro Blanco de 2001, se trata de buscar un equilibrio entre los costes y la presión fiscal. Además, se afirma que la inclusión de los costes en las tarifas no resultaría contraproducente para la competitividad de la economía europea. En este punto se remite al Libro Blanco de 1998 sobre tarifas justas por el uso de infraestructuras, donde ya se hablaba de la inclusión de tasas relacionadas con el ruido como un instrumento razonable. Los medios de transporte ecológicos han de fomentarse financieramente en su conjunto. Se reitera la mención de la necesidad de disociar el crecimiento económico del aumento del tráfico y se exige la ampliación de los derechos de los pasajeros. [57]

Normas de seguridad para túneles, así como medidas para la atenuación del ruido y el fomento de la interoperabilidad de las redes transeuropeas completan los temas relacionados con el ferrocarril. La implantación del sistema de navegación por satélite GALILEO se considera parte integrante de las medidas globales. Para finalizar, el Libro Blanco de la UE sobre transportes COM (2001) 370, "La política europea de transportes de cara al 2010", enumera una serie de medidas dirigidas a definir las futuras estrategias. [58] Parte de ellas se trasladaron después al primer paquete ferroviario europeo.

cos y organizativos. Pero también habrá que tener en cuenta, en la misma medida y durante todo el ciclo de vida, la perspectiva económica. La premisa para optimizar el uso de los recursos económicos disponibles es la coordinación a largo plazo entre la explotación y el mantenimiento.

Ya desde mediados de la década de 1990, los ferrocarriles federales austríacos están desarrollando diferentes proyectos sobre este tema, en colaboración con el Instituto de Ingeniería Ferroviaria y Economía del Transporte (EBW, por sus siglas en alemán) de la Universidad de Técnica de Graz. Esta colaboración ha dado lugar al proyecto "Strategie-Fahrweg" (Estrategia para la superestructura ferroviaria) de ÖBB, además de a una gran cantidad de estudios económicos y publicaciones, así como a un método de gestión del ciclo de vida proactivo y sostenible.

En la fig. 4-17 se muestran los resultados de los análisis sobre la distribución estática de los costes de infraestructura, distribuidos entre amortización (costes de inversión en relación con la vida útil técnica), costes de las perturbaciones en la explotación, y los costes del mantenimiento programado de las instalaciones.

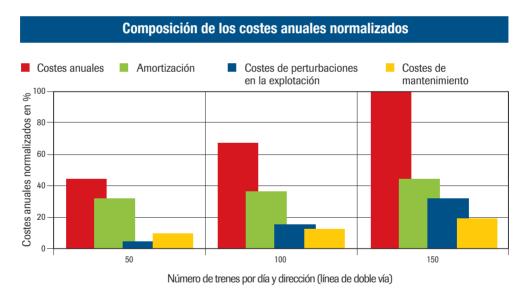


Fig. 4-17: Influencia de la amortización en los costes anuales de las instalaciones ferroviarias [62]

Para todas las intensidades de tráfico (50, 100 o 150 trenes por día y vía) se observa un claro predominio de los costes de amortización. **Desde un punto de vista económico es, por tanto, conveniente desarrollar medidas que prolonguen la vida útil de las instalaciones.** Una vida útil más corta por culpa de un "falso ahorro" en la calidad del mantenimiento o en la inversión redunda en un aumento de los costes del ciclo de vida y en una menor disponibilidad de las instalaciones. [63]

En aras de una rentabilidad sostenible de la superestructura conviene, por tanto, apostar por un mantenimiento orientado a la calidad. El enfoque integrado de los conceptos de calidad y de costes conduce a un planteamiento sostenible: "Invertir en calidad resulta rentable a medio y a largo plazo". [64]]

4.4.6.1 Generadores de costes en el mantenimiento de infraestructuras

Un estudio de TU Graz, publicado en el año 2004, describe los generadores de costes en el ámbito del mantenimiento de infraestructuras (véase fig. 4-18). La calidad inicial, tanto de la subestructura como de la superestructura, tiene efectos permanentes sobre los costes del ciclo de vida. El mayor desgaste de los componentes en curvas implica un mantenimiento más intenso y una inversión económica mayor. Esto vale, sobre todo, para las líneas de montaña, donde no solo se registra un gran número de curvas, sino también una peor accesibilidad. Diversas investigaciones han logrado optimizar el diseño y la construcción de vías en curva, contribuyendo a mejorar su comportamiento frente al desgaste. [65]

Calidad inicial de la superestructura La calidad inicial define el comportamiento de la superestructura durante el ciclo de vida completo y no se puede corregir por medio de medidas de mantenimiento a posteriori. Calidad de la subestructura Las diferentes calidades de la subestructura tienen efectos muy diferentes sobre los costes del ciclo de vida de la superestructura en función de las cargas de tráfico. En líneas de baja ocupación, los costes del ciclo de vida de la superestructura con subestructuras en muy mal estado aumentan por el factor 2 a 3 con respecto a subestructuras en buen estado, pero en líneas principales de alta ocupación, por el factor 8. Radios Los costes del ciclo de vida de una vía en una curva con R = 250 m se multiplican por aprox. 3 en comparación con un tramo equivalente en recta Costes de perturbaciones en la explotación Los costes de las perturbaciones en la explotación en líneas principales de alta ocupación pueden alcanzar hasta un tercio de los costes del ciclo de vida de una vía

Fig. 4-18: Generadores de costes en la infraestructura ferroviaria [66]

El porcentaje de los costes de perturbaciones en la explotación achacables a una menor disponibilidad por la ejecución de trabajos de mantenimiento, aumenta con mayores cargas de tráfico y puede llegar a representar hasta un tercio de los costes totales. Es posible aumentar la disponibilidad de la vía mediante la utilización de máquinas de mantenimiento de superestructura de alto rendimiento. El establecimiento de restricciones de velocidad en líneas de primera y segunda categoría, con objeto de aumentar provisionalmente la vida útil de la vía, carece de sentido desde la perspectiva de los costes del ciclo de vida, [67]

La gestión de la infraestructura ferroviaria es un tema de gran complejidad, en el que influyen una gran variedad de factores económicos, jurídicos, políticos y, sobre todo, técnicos. El objetivo de la presente serie, "Best Practices para el mantenimiento de vía", consiste en presentar estas interdependencias de forma estructurada a todos los que trabajen en este ámbito o se interesen por la materia, incidiendo especialmente en el tema de la sostenibilidad.

El tomo 1, "Gestión de la infraestructura", ofrece una descripción general de las problemáticas y los aspectos relacionados con la gestión de la infraestructura, centrándose, en particular, en el Espacio Ferroviario Europeo Único. A través de ejemplos de mejores prácticas procedentes en su mayoría de Europa Central, la presente obra apunta medidas para modernizar y mejorar el mantenimiento de la infraestructura en las redes existentes. Muchos administradores de infraestructuras se encuentran ante un cambio generacional, lo que acelera la reorientación de los procesos y procedimientos. En este campo, las modernas tecnologías de información y comunicación permiten simplificar notablemente el registro y la representación de las complejas interrelaciones descritas. Los nuevos enfoques sobre la gestión de activos y del ciclo de vida permiten la implementación de la así llamada "vía de cristal" (en alemán: "Gläserner Fahrweg"), o del "Ferrocarril 4.0".

El e-book incluido permite a los usuarios de un dispositivo con un lector de archivos PDF (PC, tablet o smartphone) consultar todos los términos y sus referencias de forma electrónica mediante una función de búsqueda.

